1,393 research outputs found

    AdS(3) Solutions of IIB Supergravity from D3-branes

    Full text link
    We consider pure D3-brane configurations of IIB string theory which lead to supersymmetric solutions containing an AdS3_3 factor. They can provide new examples of AdS3_3/CFT2_2 examples on D3-branes whose worldvolume is partially compactified. When the internal 7 dimensional space is non-compact, they can be identified as supersymmetric fluctuations of higher dimensional AdS solutions and are in general dual to 1/8-BPS operators thereof. We find that supersymmetry requires the 7 dimensional space take the form of a warped U(1) fibration over a 6 dimensional Kahler manifold.Comment: 10 pages, no figure, JHEP3.cls; v3: corrected errors in the published versio

    AdS spacetimes from wrapped M5 branes

    Get PDF
    We derive a complete geometrical characterisation of a large class of AdS3AdS_3, AdS4AdS_4 and AdS5AdS_5 supersymmetric spacetimes in eleven-dimensional supergravity using G-structures. These are obtained as special cases of a class of supersymmetric R1,1\mathbb{R}^{1,1}, R1,2\mathbb{R}^{1,2} and R1,3\mathbb{R}^{1,3} geometries, naturally associated to M5-branes wrapping calibrated cycles in manifolds with G2G_2, SU(3) or SU(2) holonomy. Specifically, the latter class is defined by requiring that the Killing spinors satisfy the same set of projection conditions as for wrapped probe branes, and that there is no electric flux. We show how the R-symmetries of the dual field theories appear as isometries of the general AdS geometries. We also show how known solutions previously constructed in gauged supergravity satisfy our more general G-structure conditions, demonstrate that our conditions for half-BPS AdS5AdS_5 geometries are precisely those of Lin, Lunin and Maldacena, and construct some new singular solutions.Comment: 1+56 pages, LaTeX; v2, references added; v3, minor corrections, final version to appear in JHE

    Geometries with Killing Spinors and Supersymmetric AdS Solutions

    Full text link
    The seven and nine dimensional geometries associated with certain classes of supersymmetric AdS3AdS_3 and AdS2AdS_2 solutions of type IIB and D=11 supergravity, respectively, have many similarities with Sasaki-Einstein geometry. We further elucidate their properties and also generalise them to higher odd dimensions by introducing a new class of complex geometries in 2n+22n+2 dimensions, specified by a Riemannian metric, a scalar field and a closed three-form, which admit a particular kind of Killing spinor. In particular, for n≥3n\ge 3, we show that when the geometry in 2n+22n+2 dimensions is a cone we obtain a class of geometries in 2n+12n+1 dimensions, specified by a Riemannian metric, a scalar field and a closed two-form, which includes the seven and nine-dimensional geometries mentioned above when n=3,4n=3,4, respectively. We also consider various ansatz for the geometries and construct infinite classes of explicit examples for all nn.Comment: 28 page

    Cultures of creativity

    Get PDF

    Semiclassical strings in marginally deformed toric AdS/CFT

    Full text link
    We study string solutions in the beta-deformed Sasaki-Einstein gauge/gravity dualities. We find that the BPS point-like strings move in the submanifolds where the two U(1) circles shrink to zero size. In the corresponding T^3 fibration description, the strings live on the edges of the polyhedron, where the T^3 fibration degenerates to T^1. Moreover, we find that for each deformed Sasaki-Einstein manifold the BPS string solutions exist only for particular values of the deformation parameter. Our results imply that in the dual field theory the corresponding BPS operators exist only for these particular values of the deformation parameter we find. We also examine the non-BPS strings, derive their dispersion relations and compare them with the undeformed ones. Finally, we comment on the range of the validity of our solutions and their dependence on the deformation parameter.Comment: 29 pages, 9 figure

    Superconformal field theories from crystal lattices

    Get PDF
    We propose a brane configuration for the (2+1)d, N=2\mathcal{N}=2 superconformal theories (CFT3_3) arising from M2-branes probing toric Calabi-Yau 4-fold cones, using a T-duality transformation of M-theory. We obtain intersections of M5-branes on a three-torus which form a 3d bipartite crystal lattice in a way similar to the 2d dimer models for CFT4_4. The fundamental fields of the CFT3_3 are M2-brane discs localized around the intersections, and the super-potential terms are identified with the atoms of the crystal. The model correctly reproduces the complete BPS spectrum of mesons and baryons.Comment: 4 pages, 4 figures, revtex; v2. references added, minor correction

    A Calibration Bound for the M-Theory Fivebrane

    Get PDF
    We construct a covariant bound on the energy-momentum of the M-fivebrane which is saturated by all supersymmetric configurations. This leads to a generalised notion of a calibrated geometry for M-fivebranes when the worldvolume gauge field is non-zero. The generalisation relevant for Dp-branes is also given.Comment: 9 pages, LaTeX2e, uses vmargin.sty. Typos corrected, a reference and a new discussion on conserved charges added. v4: A typo in the expression for the D-fourbrane energy correcte

    The Geometry of D=11 Null Killing Spinors

    Full text link
    We determine the necessary and sufficient conditions on the metric and the four-form for the most general bosonic supersymmetric configurations of D=11 supergravity which admit a null Killing spinor i.e. a Killing spinor which can be used to construct a null Killing vector. This class covers all supersymmetric time-dependent configurations and completes the classification of the most general supersymmetric configurations initiated in hep-th/0212008.Comment: 30 pages, typos corrected, reference added, new solution included in section 5.1; uses JHEP3.cl

    Branes and Calibrated Geometries

    Get PDF
    The fivebrane worldvolume theory in eleven dimensions is known to contain BPS threebrane solitons which can also be interpreted as a fivebrane whose worldvolume is wrapped around a Riemann surface. By considering configurations of intersecting fivebranes and hence intersecting threebrane solitons, we determine the Bogomol'nyi equations for more general BPS configurations. We obtain differential equations, generalising Cauchy-Riemann equations, which imply that the worldvolume of the fivebrane is wrapped around a calibrated geometry.Comment: Latex, 35 pages. References added, minor change
    • …
    corecore